Analysis of Physical Property of Nitride III-V Ternary Semiconductors

Authors: V.Rama Murthy & Alla.Srivani Research Scholar Rayalaseema College P.G Department of Physics, T.J.P.S College Guntur-6 A.P India Abstract: Nitride III-V Ternary semiconductors are important being an x of the constituent within the semiconductor will have significant alterations in calculating Thermal Physical Property like Melting point. These Ternary Compounds could be produced from binary compounds by changing half from the atoms in a single sub lattice by lower valence atoms, another half by greater valence atoms and looking after average quantity of valence electrons per atom. The subscript X refers back to the alloy content or power of the fabric, which describes proportion from the material added and changed by alloy material. This paper signifies analysis of Melting reason for Nitride III-V Ternary Semiconductors

Key phrases: Composition, Thermal property, Melting point, III-V Ternary semiconductors, Nitride group

Introduction: 1)Within this opening talk of Analysis of Melting reason for Arsenide III-V Ternary Semiconductors dopant is put into the semiconductor to variate most significant Physical property 2)The continual variation of Thermal Physical qualities like Melting reason for ternary compounds with relative power of ingredients is the most utility in growth and development of solid-condition technology. 3)In our work, the solid solutions owned by Arsenide III-V Ternary Semiconductors happen to be looked into. To be able to have better knowledge of performance of those solid solutions for just about any particular application, it might be quite essential to focus on the Thermal Physical qualities like melting point 4)Lately not one other type of material of semiconductors has attracted a lot scientific and commercial attention such as the Arsenide III-V Ternary compounds. 5)Doping of component inside a Binary semiconductors and altering the composition of do pant has really led to cut in Melting point. 6)Thus effect of do pant lessens the Melting point and finds extensive programs 7)The current analysis relates Thermal Physical property like Melting point with variation of composition for Arsenide III-V Ternary Semiconductor. 8)The fair agreement between calculated and reported values of Melting reason for Arsenide III-V Ternary semiconductors give further extension Physical Qualities for Ternary semiconductors. 9)The current work opens new type of method of Thermal Physical property like Melting reason for Arsenide III-V Ternary Semiconductors Objective: The primary Objective of the paper would be to calculate Melting reason for Arsenide III-V Ternary Semiconductors

Purpose: The objective of study would be to calculate Melting reason for Nitride III-V Ternary Semiconductors This paper includes Melting point variation with Composition of Dopant

Theoretical Impact: CompoundAlAsGaAsInAsInPGaPAlSbInSbGaNAlNInNAlPGaSb Melting point2013151012151330175013307981500250012002100980

Compound1) GaAsxN1-x=GaAs GaN M.P OF Ternary150015011501.515021502.515031503.515041504.51505 X values00.

1505.515061506.515071507.515081508.515091509.51510 .550.60.650.70.750.80.850.90.951

Compound2) GaAs1-xNx=GaN GaAs M.P OF Ternary151015091508.515081507.515071506.515061505.51505 X values00.

1504.515041503.515031502.515021501.515011500.51500 .550.60.650.70.750.80.850.90.951

Compound3) Al1-xGaxN=GaN AlN M.P OF Ternary2500240023502300225022002150210020502000 X values00.

1950190018501800175017001650160015501500 .550.60.650.70.750.80.850.90.951

Compound4) InxGa1-xN=Motel GaN M.P OF Ternary1500147014551440142514101395138013651350 X values00.

1335132013051290127512601245123012151200 .550.60.650.70.750.80.850.90.951

Compound5) In1-xGaxN=GaN Motel M.P OF Ternary1200123012451260127512901305132013351350 X values00.

1365138013951410142514401455147014851500 .550.60.650.70.750.80.850.90.951

Compound6) InAsxN1-x=InAS Motel M.P OF Ternary12001201.51202.312031203.81204.51205.312061206.81207.5 X values00.

1208.312091209.81210.51211.312121212.81213.51214.31215 .550.60.650.70.750.80.850.90.951

Compound7) InAs1-xNx=Motel InAs M.P OF Ternary12151213.51212.812121211.31210.51209.812091208.31207.5 X values00.

1206.812061205.31204.51203.812031202.31201.51200.81200 .550.60.650.70.750.80.850.90.951

Compound8) Al1-xInxN=Motel AlN M.P OF Ternary2500237023052240217521102045198019151850 X values00.

1785172016551590152514601395133012651200 .550.60.650.70.750.80.850.90.951

Compound9) GaP1-xNx=GaN GaP M.P OF Ternary175017251712.517001687.516751662.516501637.51625 X values00.

1612.516001587.515751562.515501537.515251512.51500 .550.60.650.70.750.80.850.90.951

Compound10) GaPxN1-x=GaP GaN M.P OF Ternary150015251537.515501562.515751587.516001612.51625 X values00.

1637.516501662.516751687.517001712.517251737.51750 .550.60.650.70.750.80.850.90.951

Doping of component inside a Binary semiconductor like Nitride III-V Ternary Semiconductors and altering the composition of do pant has really led to cut in Melting point.

Future Plans: 1) Current data group of analysis of Melting reason for Nitride III-V Ternary Semiconductors range from the most lately developed techniques and basis sets are ongoing. The information may also be found to show issues with existing ideas and accustomed to indicate where additional research must be completed in future. 2) The technological need for the ternary semiconductor alloy systems looked into bakes an knowledge of the phenomena of alloy broadening necessary, because it might be essential in affecting semiconductor device performance. Conclusion:

1)This paper must be addressed theoretically to ensure that a simple knowledge of the physics involved with such phenomenon could be acquired regardless of the significance of ternary alloys for device programs. 2)Limited theoretical work is available on Melting reason for Nitride III-V Ternary Semiconductors within the Composition selection of (

Results and Discussion: Melting point values of Ternary Semiconductors are utilized in calculation of Thermal Physical Property of Ternary Semiconductors and Band Energy Gap can be used for Electrical passing of semiconductors. This phenomenon can be used in Band Gap Engineering. Acknowledgments. – This review has achieved positive results from V.R Murthy, K.C Sathyalatha contribution who completed the calculation of physical qualities for many ternary compounds with additivity principle. It’s a pleasure to understand several fruitful discussions with V.R Murthy.

References: Goldberg Yu.A. Guide Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, erectile dysfunction., World Scientific, London, 1999, pp. 1-36. S.Adachi, J. Appl. Phys., 58, no.3, pp.R1-R29 (1985). M.A.Afromowitz, J. Appl. Phys., 44, no.3, pp.1292-1294 (1973). D.E.Aspnes, Phys. Rev., B14, no.12, pp.5331-5343 (1976). D.E.Aspnes, S.M.Kelso, R.A.Logan, R.Bhat., J.Appl.Phys., 60, no.2, pp.754-767 (1986). I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Qualities of Inorganic Substances, Springer, Berlin-Heidelberg-New You are able to, 1977. K. Brennan, K. Hess, J. Appl. Phys., 59, no.3, pp.964-966 (1986). T. J. Drummond, W. Kopp, R. Fischer, H. Morkoc, J. Appl. Phys., 53, no.2, pp.1028-1029 (1982). M. Ettenberg, R. J. Paff, J. Appl. Phys., 41, no.10, pp.3926-3927 (1970). M.A. Haase, M.A. Emanuel, S.C. Cruz, J.J. Coleman, and G.E. Stillman, Appl. Phys. Lett., 50, no.7, pp.404-406 (1987). J.J. Harris, C.T. Foxon, K.W.J. Barhkam, D.E. Lacklison, J. Hewett, C. Whitened, J. Appl. Phys., 61, no.3, pp.1219-1221 (1987) S. Hava, M. Auslender, J. Appl. Phys., 73, no.11, pp.7431-7434 (1993). R. Heilman, G. Oelgart, Semicond. Sci. Technol., 5, no 10, pp.1040-1045 (1990). G. Hill, and P.N.Robson, J.p Physique, 42, Colloque no.7, Suppl. au no.10, pp.C7-335 – C7-341 (1981). J.H. Hur, C.W. Myles, M.A. Gundersen, J. Appl. Phys., 67, no.11, pp.6917-6923 (1990). S.C.Jain, J.M.McGregor, D.J.Roulston, J. Appl. Phys., 68, no.7, pp.3747-3749 (1990). S.C.Jain, and D.J.Roulston, Solid Condition Electron, 34, no.5, pp.453-465 (1991). D.W.Jenkins, J. Appl. Phys., 68, no.4, pp.1848-1853 (1990). K.Kaneko, M.Ayabe, and N.Watanabe, in GaAs and Related Compounds (Inst.of Phys., London, Ser . 33a, 1977), pp.216-226. J.M.Langer, H.Heinrich, Physica B, 134 no.1-3, pp.444-450 (1985). B.D.Lichter and P.Sommelet, Trans. Metall. Soc., AIME, 245, pp.1021-1027 (1969). D.Lippens, O.Vanbesien, in GaAs and Related Compounds (Inst.of Phys., Bristol and Philadelphia, Ser. 91, 1987), pp.757-760. W.C.Liu, J. Material Sci., 25, no.3, pp.1765-1772 (1990). D.C.Look, D.K.Lorance, J.R.Sizelove, C.E.Stutz, K.R.Evans, D.W.Whitson, J. Appl. Phys., 71, no.1, pp.260-266 (1992). W.T.Masselink, Semicond. Sci. Technol., 4, no.7, pp.503-512 (1989). W.T.Masselink,N.Braslau, D.LaTulipe, W.I.Wang, S.L.Wright, in GaAs and Related Compounds (Inst. of Phys.,Bristol and Philadephia, Ser. 91, 1987), pp.665-668. B.Monemar, K.K. Shih, and G.D.Pettit, J. Appl. Phys., 47, no.6, pp.2604-2613 (1976). M.p Murcia, D.Gasquet, E.Richard, P.Wolff, J.Zimmermann, J.Vanbremeersch, AIP Conf. Proc. 285 (Noise in Physical Systems and 1/f fluctuations, St.Louis, USA, 1993), pp.27-30 . L. Pavesi, M.Guzzi, J. Appl. Phys., 75, no.10, pp.4779-4842 (1994). P.J.Pearah, W.T.Masselink, J.Klem, T.Henderson, H.Morcoc, C.W.Litton, D.C.Reynolds, Phys.Rev., B32, no.6, pp.3857-3862 (1985). L.Pfeiffer, K.W.West, H.L.Stormer, K.W.Baldwin, Appl. Phys. Lett., 55, no.18, pp.1888-1890 (1989). A.N.Pikhtin, A.D.Yas’kov, Sov.Phys.Semicond., 14, no.4, pp.389-392 (1980). V.M.Robbins, S.C.Cruz, G.E.Stillman, Appl. Phys. Lett, 52, no.4, pp.296-298 (1988). A.K. Sabena, J. Phys. C., 13, no.23, pp. 4323-4334 (1980). A. K. Sabena, Solid St. Comm., 39, no.7, pp. 839-842 (1981). A.K.Saxena, Phys. Rev., B24, no.6, pp. 3295-3302 (1981). M.Shur, Physics of Semiconductor Products, Prentice Hall, 1990. A.J. Spring Thorpe, T.D. King, A.J. Beck, J. Electron. Mater. 4, no.1, pp. 101-118 (1975). G.E.Stillman, C.M. Wolfe, and J.O. Dimmock, J. Phys. Chem. Solids, 31, no. 6, pp. 1199-1204 (1970). M.Takeshima, J. Appl. Phys., 58, no.10, p.3846 (1985) M.L. Timmons, J.A. Hutchby, R.K. Ahrenkiel, D.J. Dunlavy, in GaAs and Related Compounds (Inst. of Phys., Bristol and Philadelphia, Ser. 96, 1988), pp. 289-294. W.Walukiewicz, J. Appl. Phys., 59, no.10, pp.3577-3579 (1986). Z.Wilamowski, J.Kossut, W.Jantsch, and G.Ostermayer, Semicond.Sci.Technol. 6, no.10B, pp.B38-B46 (1991). J.J.Yang, W.I.Simpson, L.A.Moudy, in GaAs and Related Compounds (Inst. of Phys., Bristol and London, Ser.63, 1981), pp.107-112. J.J.Yang, L.A.Moudy, W.I.Simpson, Appl. Phys. Lett. 40, no. 3, pp.244-246 (1982). H.A.Zarem, J.A.Lebens, K.B.Nordstrom, P.C.Sercel, S.Sanders, L.E.Eng, A.Yariv, K.J.Vahala, Appl.Phys.Lett., 55, no. 25, pp.2622-2624 (1989).


Leave a comment

Your email address will not be published. Required fields are marked *