Analysis of AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap

Authors: V.Rama Murthy & Alla.Srivani Research Scholar Rayalaseema College P.G Department of Physics, T.J.P.S College Guntur-6 A.P India

Abstract: AlAsxSb1-x III-V Ternary semiconductor is essential being an x of the constituent within the semiconductor will have significant alterations in calculating Physical Property like Band Energy Gap. These Ternary Compounds could be produced from binary compounds AlAs and AlSb by changing half from the atoms in a single sub lattice by lower valence atoms, another half by greater valence atoms and looking after average quantity of valence electrons per atom. The subscript X refers back to the alloy content or power of the fabric, which describes proportion from the material added and changed by alloy material. This paper signifies the AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap values

Key phrases: Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.

Introduction: 1)Within this opening talk of AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap Electronegativity values of Ternary Semiconductors are denoted by symbols XM and XN and Band Energy Gap is denoted by Eg

2)Linus Pauling first suggested Electro Negativity in 1932 like a growth and development of valence bond theory,[2] it’s been proven to correlate with many other chemical qualities.

3)The continual variation of physical qualities like Electro Negativity of ternary compounds with relative power of ingredients is the most utility in growth and development of solid-condition technology.

4)In our work, the solid solutions owned by AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap happen to be looked into. To be able to have better knowledge of performance of those solid solutions for just about any particular application, it might be quite essential to focus on the physical qualities like Electro Negativity of those materials.

5)Lately not one other type of material of semiconductors has attracted a lot scientific and commercial attention such as the III-V Ternary compounds.

6)Doping of As component inside a Binary semiconductor like AlSb and altering the composition of do pant has really led to cut in Band Energy Gap.

7)Thus effect of do pant boosts the conductivity and reduces this guitar rock band Energy Gap and finds extensive programs

8)The current analysis relates Band Energy Gap and Electro Negativity with variation of composition for AlAsxSb1-x III-V Ternary Semiconductor.

9)The fair agreement between calculated and reported values of Band Energy Gaps of AlAs and AlAsb Binary semiconductors give further extension of Band Energy Gaps for Ternary semiconductors.

10)The current work opens new type of method of Band Energy Gap studies in AlAsxSb1-x III-V Ternary Semiconductor

Objective: The primary Objective of the paper would be to calculate AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap values

Purpose: The objective of study is AlAsxSb1-x III-V Ternary Semiconductor Band Energy Gap and effect of concentration in Electro Negativity values of III-V Ternary Semiconductors to represent additivity principle even just in really low concentration range. This paper includes Electro Negativity values of III-V ternary semiconductors and Band Energy Gap values in composition range (

Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1 2*f12)]Energy (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors:

CompoundAlGaAsInPSbN E.N value1.51.821.72.11.93

Electro Negativity values of AlAsxSb1-x III-V Ternary Semiconductor

X value00.10.150.20.250.30.350.40.450.5 1-x value10.90.850.80.750.70.650.60.550.5

CompoundAlAsxSb1-x XM value1.51.51.51.51.51.51.51.51.51.5 XN value11.066291.1010651.1369741.1740551.2123451.2518831.2927111.334871.378405 (XM/XN)2 2.251.9789361.8559081.7405281.6323221.5308421.4356711.3464171.2627121.184211

(XM-XN)20.250.1881040.1591490.1317880.106240.0827460.0615620.0429690.0272680.014785 2(XM-XN)21.1892071.1392661.1166281.095651.0764191.0590321.0435951.0302321.019081.010301 (2(XM-XN)2)1/41.0442741.0331331.0279621.02311.0185811.0144421.0107251.0074741.0047361.002565 28.8/(2(XM-XN)2)1/427.5789727.8763728.0165928.1497528.2746428.3899928.494428.5863528.6642428.72631

ALPHA-M105.41103.1168101.9702100.823699.67798.530497.383896.237295.090693.944 RO-VALUES4.224.1794.15854.1384.11754.0974.07654.0564.03554.015 M-VALUES148.74144.056141.714139.372137.03134.688132.346130.004127.662125.32 ALPHA-M*RO/M2.9906562.9913722.9922452.9934852.9951112.9971422.99963.0025083.0058913.009776

TOTAL 4*PI*N7.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 24 4*PI*N/3 VALUES2.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 24 (4PIN/3)*ALPHAM*RO/M7.54E 247.54E 247.55E 247.55E 247.55E 247.56E 247.56E 247.57E 247.58E 247.59E 24 1-(4PIN/3)*ALPHAM*RO/M7.54E 247.54E 247.55E 247.55E 247.55E 247.56E 247.56E 247.57E 247.58E 247.59E 24 1 2*(4PIN/3)*ALPHAM*RO/M1.51E 251.51E 251.51E 251.51E 251.51E 251.51E 251.51E 251.51E 251.52E 251.52E 25

1-phi12/1 phi120.50.50.50.50.50.50.50.50.50.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1 2*phi12)13.7894913.9381914.008314.0748714.1373214.19514.247214.2931814.3321214.36315

Eg value366.4235183.7855134.148599.7470675.4690858.0412845.3290135.9157728.8460923.46537

X value0.550.60.650.70.750.80.850.90.951 1-x value0.450.40.350.30.250.20.150.10.050

Compound XM value1.51.51.51.51.51.51.51.51.51.5 XN value1.4233591.4697791.5177141.5672111.6183231.6711021.7256021.7818791.8399921.9 (XM/XN)2 1.1105891.0415450.9767940.9160680.8591170.8057060.7556160.7086410.6645850.623269

(XM-XN)20.0058740.0009130.0003140.0045170.0140.0292760.0508960.0794560.1155950.16 2(XM-XN)21.004081.0006331.0002181.0031361.0097521.02051.0359081.0566191.0834211.117287 (2(XM-XN)2)1/41.0010181.0001581.0000541.0007831.0024291.0050861.0088591.0138641.0202331.028114 28.8/(2(XM-XN)2)1/428.770728.7954428.7984328.7774628.7302128.6542628.5471128.4061828.2288528.01246

ALPHA-M92.797491.650890.504289.357688.21187.064485.917884.771283.624682.478 RO-VALUES3.99453.9743.95353.9333.91253.8923.87153.8513.83053.81 M-VALUES122.978120.636118.294115.952113.61111.268108.296106.584104.242101.9 ALPHA-M*RO/M3.0141913.0191673.0247383.0309393.037813.0453923.0714963.0628793.0728883.083819

TOTAL 4*PI*N7.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 247.56E 24 4*PI*N/3 VALUES2.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 242.52E 24 (4PIN/3)*ALPHAM*RO/M7.6E 247.61E 247.63E 247.64E 247.66E 247.68E 247.75E 247.72E 247.75E 247.78E 24 1-(4PIN/3)*ALPHAM*RO/M7.6E 247.61E 247.63E 247.64E 247.66E 247.68E 247.75E 247.72E 247.75E 247.78E 24 1 2*(4PIN/3)*ALPHAM*RO/M1.52E 251.52E 251.53E 251.53E 251.53E 251.54E 251.55E 251.54E 251.55E 251.56E 25

1-phi12/1 phi120.50.50.50.50.50.50.50.50.50.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1 2*phi12)14.3853514.3977214.3992214.3887314.3651114.3271314.2735614.2030914.1144214.00623

Eg value19.3185416.0847913.5349911.503429.8687758.5413167.4538996.5557945.8083015.181627

Doping of As component inside a Binary semiconductor like AlSb and altering the composition of do pant has really led to cut in Band Energy Gap.

Future Plans: 1) Current data group of Electro Negativity values of AlAsxSb1-x III-V Ternary Semiconductors and Band Energy Gap values range from the most lately developed techniques and basis sets are ongoing. The information may also be found to show issues with existing ideas and accustomed to indicate where additional research must be completed in future.

2) The technological need for the ternary semiconductor alloy systems looked into bakes an knowledge of the phenomena of alloy broadening necessary, because it might be essential in affecting semiconductor device performance.

Conclusion: 1)This paper must be addressed theoretically to ensure that a simple knowledge of the physics involved with such phenomenon could be acquired regardless of the significance of ternary alloys for device programs.

2)Limited theoretical focus on Electro Negativity values and Band Energy Gap of AlAsxSb1-x III-V Ternary Semiconductors within the Composition selection of (

3) Our results concerning the Electro Negativity values and Band Energy Gap of III-V Ternary Semiconductors are discovered to be in reasonable agreement using the experimental data

Results and Discussion: Electro Negativity values of Ternary Semiconductors are utilized in calculation of Band Energy Gaps and Echoing indices of Ternary Semiconductors and Band Energy Gap can be used for Electrical passing of semiconductors. This phenomenon can be used in Band Gap Engineering.

Acknowledgments. – This review has achieved positive results from V.R Murthy, K.C Sathyalatha contribution who completed the calculation of physical qualities for many ternary compounds with additivity principle. It’s a pleasure to understand several fruitful discussions with V.R Murthy.

References: 1) IUPAC Gold Book internet edition: “Electronegativity”. 2)Pauling, L. (1932). “The Character from the Chemical Bond. IV. The Power of Single Bonds and also the Relative Electronegativity of Atoms”. Journal from the American Chemical Society 54 (9): 3570-3582.. 3)Pauling, Linus (1960). Character from the Chemical Bond. Cornell College Press. pp. 88-107. ISBN 0801403332 . 4) Greenwood, N. N. Earnshaw, A. (1984). Chemistry from the Elements. Pergamon. p. 30. ISBN -08-022057-6. 5) Allred, A. L. (1961). “Electronegativity values from thermochemical data”. Journal of Inorganic and Nuclear Chemistry 17 (3-4): 215-221.. 6) Mulliken, R. S. (1934). “A Brand New Electroaffinity Scale Along with Data on Valence States as well as on Valence Ionization Potentials and Electron Affinities”. Journal of Chemical Physics 2: 782-793.. 7) Mulliken, R. S. (1935). “Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments”. J. Chem. Phys. 3: 573-585.. 8) Pearson, R. G. (1985). “Absolute electronegativity and absolute hardness of Lewis chemicals and bases”. J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (second Edn.). New You are able to: Harper & Row. p. 167. 10)Allred, A. L. Rochow, E. G. (1958). “A scale of electronegativity according to electrostatic pressure”. Journal of Inorganic and Nuclear Chemistry 5: 264.. 11)Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12)Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13)CRC Guide of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). “Electronegativity and bond energy”. Journal from the American Chemical Society 105: 2259 15)Murthy, Y.S., Naidu, B.S. and Reddy, P.J., -Material Science &Engineering,-B38, 175 (1991)

Leave a comment

Your email address will not be published. Required fields are marked *